Non-Homogeneous Linear Differential Equations Differential Equations X. Du

- Second-Order Linear Non-Homogeneous Differential Equation
 - Takes the form y''+P(x)y'+Q(x)y = f(x)
 - f(x) is the input into the model, or the driving or forcing term.
 - Associated homogeneous equation: y''+P(x)y'+Q(x)y=0
 - The general solution of the associated homogeneous equation is the **complementary solution**: $y_c = c_1 y_1 + c_2 y_2$
 - Applications:
 - Forced mass-spring system with damping: mx''+cx'+kx = f(t)
 - Swinging pendulum being pushed: $\theta'' + \frac{g}{I} \sin \theta = f(t)$
 - RLC circuit (or LC circuit) with a battery or current source

$$Lq''+Rq'+\frac{q}{C} = \varepsilon(t) (\text{or } Lq''+\frac{q}{C} = \varepsilon(t))$$

- An *n*th-order non-homogeneous linear differential equation
 - Takes the form $y^{(n)} + A(x)y^{(n-1)} + ... + P(x)y' + Q(x)y = f(x)$.
 - Associated homogeneous equation: $y^{(n)} + A(x)y^{(n-1)} + ... + P(x)y' + Q(x)y = 0$
 - The general solution of the associated homogeneous equation is the **complementary solution**: $y = c_1y_1 + c_2y_2 + ... + c_ny_n$
- Theorem: The solution to a linear non-homogeneous differential equation takes the form
 - $y = y_c + y_p$, where y_c is the complementary solution and y_p is a particular solution.
 - Prove that $y = y_c + y_p$ is a solution to a linear non-homogeneous differential equation by substitution and linearity of differentiation.
 - Prove that $y = y_c + y_p$ is the general solution with the fact that y_c is the general solution of the associated homogeneous equation by linearity.
 - Relate to first-order non-homogeneous differential equations. Think of y_c as the transient and y_p as the steady-state solution long term behavior depends on the particular solution (as long as y_c does not "blow-up").
- How to solve:
 - Find the general solution of the associated homogeneous differential equation (i.e. the complementary solution y_c) using previous methods.
 - Find any y_p (see next page).